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Abstract. We consider the Nonconvex Piecewise Linear Network Flow Problem (NPLNFP) which
is known to beNP -hard. Although exact methods such as branch and bound have been developed
to solve the NPLNFP, their computational requirements increase exponentially with the size of the
problem. Hence, an efficient heuristic approach is in need to solve large scale problems appearing
in many practical applications including transportation, production-inventory management, supply
chain, facility expansion and location decision, and logistics. In this paper, we present a new approach
for solving the general NPLNFP in a continuous formulation by adapting a dynamic domain contrac-
tion. A Dynamic Domain Contraction (DDC) algorithm is presented and preliminary computational
results on a wide range of test problems are reported. The results show that the proposed algorithm
generates solutions within 0 to 0.94 % of optimality in all instances that the exact solutions are
available from a branch and bound method.

Key words: Domain contraction; Dynamic slope scaling procedure; Fixed charge; Nonconvex piece-
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1. Introduction

The Nonconvex Piecewise Linear Network Flow Problem (NPLNFP) is one of the
most difficult problems in combinatorial network optimization [11]. In many prac-
tical applications dealing with a network structure such as transportation, logistics,
supply chain management involving a production-inventory system, and facility
location, we usually deal with various cost functions havingeconomies of scale
and/ornonconvex piecewise linearaspects. In most cases, these problems can be
formulated as a 0-1 Mixed Integer Programming (MIP) problem which is solved
by a branch and bound type method [2].

Although branch and bound algorithms can find exact solutions for small size
problems, we cannot avoid exponential time and memory requirements as the prob-
lem size increases [10]. Thus, we are in need of developing efficient heuristic
methods to produce ‘good’ quality sub-optimal solutions for practical size prob-
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lems. This can be done by considering the special cost structure and solution
behavior of the problem.

In particular, the problem we focus on here is to minimize a sum of discontinu-
ous piecewise linear arc costs with a set of network constraints. This is an extension
of the previous study for solving continuous concave Piecewise Linear Network
Flow Problems (PLNFP) by reducing them into a fixed charge network model [8].
However, different from the concave case, there is no guarantee of extreme point
optimality because of the absence of concavity [3, 5]. Due to the above reason, ver-
tex enumerating type techniques [12] may fail to find exact solutions. As a result,
the solution can be attained at the boundary or interior of the feasible domain. This
motivates the initial idea of adapting a domain contraction concept [13].

The paper is organized as follows. The following section contains the problem
descriptions and formulations, and the domain contraction scheme in the proposed
algorithm is discussed in Section 3. The numerical results are shown in Section 4,
and Section 5 concludes the paper.

2. The Problem and Formulations

The Nonconvex Piecewise Linear Network Flow Problem (NPLNFP) can be stated
as follows:

Given a directed graphG = (N,A) consisting of a setN of m nodes and a set
A of n arcs, then solve

[NPLNFP]

min f (x) =
∑
(i,j)∈A

fij (xij )

subject to∑
(k,i)∈A

xki −
∑
(i,k)∈A

xik = bi, ∀ i ∈ N (2.1)

06 xij 6 uij , ∀ (i, j) ∈ A (2.2)

wheref is separable and eachfij is discontinuous piecewise linear. In general, the
arc costfij (xij ) can be defined as follows:

fij (xij ) =


c1
ij xij + s1

ij , 06 xij < λ1
ij

c2
ij xij + s2

ij , λ1
ij 6 xij < λ2

ij

...
...

c
rij
ij xij + srijij , λrij−1

ij 6 xij 6 λ
rij
ij

whereλrij for r = 1,2, . . . , rij − 1 are breakpoints andrij denotes the number
of segments in the given interval [0,uij ]. The problem is uncapacitated ifuij =
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Figure 1. An example of staircase arc cost functions.

∞, ∀ (i, j) ∈ A. Different from concave piecewise linear cases, it is assumed that
each piecewise linear arc cost function can be discontinuous at any breakpoint.
Thus, any general concave minimization technique can not be directly implemented
to solve this problem.

Nonconvex piecewise linear arc costs can be generalized in two types, the so-
called staircase[1, 4, 9] andsawtooth[9] arc cost functions, respectively. Both
arc cost functions have a very similar structure in overall shape, however, they
have a different aspect at breakpoints (see Figures 1 and 2). It can be described in
mathematical form as follows:

− ‘Staircase’ arc cost function:

f r−1
ij (λr−1

ij ) < f rij (λ
r−1
ij + ε), for anyε > 0 andr = 2,3, . . . , rij ,

and
− ‘Sawtooth’ arc cost function:

f r−1
ij (λr−1

ij − ε) > f rij (λ
r−1
ij ), for anyε > 0 andr = 2,3, . . . , rij ,

wheref kij is an arc cost for thek-th segment in each arc cost function,fij . Moreover,
the slopes in each arc cost function,crij > 0, hold a decreasing property, due to the
practical reason such asprice discounts.

In a previous study [8], this problem was reformulated as a 0-1 Mixed Integer
Programming (MIP) problem in the fixed charge structure as follows:

Let us define the size of the interval between adjacent breakpoints as

1λrij = λrij − λr−1
ij , ∀ (i, j) ∈ A, r = 1,2, . . . , rij , (2.3)
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Figure 2. An example of sawtooth arc cost functions.

and define the gap of function values at each breakpoint in the arc cost functions as

1drij = (crij λ
r−1
ij + srij )− (cr−1

ij λr−1
ij + sr−1

ij )

= srij − sr−1
ij + (crij − cr−1

ij )λr−1
ij , ∀ (i, j) ∈ A, ∀ r, (2.4)

wheres0
ij = 0 andc0

ij = 0 (also clearly1d1
ij = s1

ij ). We now letxrij be the part of
xij that lies within levelr (i.e. r-th segment), in the following sense:

xrij =


0 if xij 6 λr−1
ij

xij − λr−1
ij if λr−1

ij < xij 6 λrij
1λrij if xij > λrij ,

(2.5)

and introduce new binary variables defined by

yrij =
{

1 if λr−1
ij < xij

0 otherwise.
(2.6)

Then, we have

[NPLNFP]MIP

min
∑
(i,j)∈A

rij∑
r=1

(crij x
r
ij +1drij yrij )

subject to constraints in (1) and

xij =∑rij
r=1 x

r
ij , ∀ (i, j) (2.7)

xrij 6 1λrij yrij , ∀ (i, j), r = 1, . . . , rij (2.8)

xr−1
ij > 1λr−1

ij yrij , ∀ (i, j), r = 2, . . . , rij (2.9)

xrij > 0, ∀ (i, j), r = 1, . . . , rij (2.10)

yrij ∈ {0,1}, ∀ (i, j), r = 1, . . . , rij . (2.11)
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It is noticed that combining one constraint from (8) and one from (9) yields
1λr−1

ij yrij 6 xr−1
ij 6 1λr−1

ij yr−1
ij , which impliesyrij 6 yr−1

ij , ∀ (i, j), r > 1.
There is another approach to formulate the problem as a concave Minimum Cost

Network Flow Problem model. In [9], Lamar described an equivalent formulation
of MCNFP with general nonlinear arc costs (including the problem considered
in this section) as a concave MCNFP on an extended network. The equivalence
between the problems is based on converting each arc with an arbitrary cost func-
tion in the original problem into an arc with a concave piecewise linear cost func-
tion in series with a set of parallel arcs, each with a linear arc cost function (see [9]
for details). Thus, the resulting problem is a concave MCNFP, which is different
from the FCNFP formulation model shown above.

However, since both approaches are limited by problem size, we propose a new
Linear Programming (LP)-based heuristic approach by employing theDynamic
Slope Scaling Procedure[6], andDomain Contractiontechnique [13].

3. Dynamic Domain Contraction Algorithm

Next we consider successive LP problems which linearize the original version of
NPLNFP described in Section 2 with a linearized objective function as follows.
For each iterationk, we solve the following LP problem to find a solution,x̄k :

[NPLNFP]kLP

min f̄ k(x) =
∑
(i,j)∈A

c̄kij xij (3.12)

subject to the same constraints in (1) and (2), where the dynamic slope scaling
factor, c̄kij is obtained and updated by the following scheme:

• For the initial iterationk = 0,

c̄kij = crijij +
s
rij
ij

uij
.

• For k = 1,2,3, . . . , if the previous solution̄xk−1
ij occurs in ther-th segment,

then

c̄kij = crij +
srij

x̄k−1
ij

, for x̄k−1
ij > 0.

The detail updating schemes whenx̄k−1
ij = 0 can be found in [6].

Based on the Dynamic Slope Scaling Procedure (DSSP) briefly shown above,
we develop a contraction rule to reduce the given feasible domain (polyhedron)
for this problem. For each iterationk, the feasible domain to be considered can be
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Figure 3. An example of Domain Contraction.

reduced depending on which segments contain the current LP solution from the
DSSP. If the current LP solution for arc(i, j), xkij occurs in ther-th segment, then
we can solve this problem as a fixed charge problem with an arc cost function as:

fij (xij ) = crij xij + srij , for (i, j) ∈ A.
However, due to the absence of concavity in the arc cost functions, we cannot
directly decompose and reduce this problem into a simple fixed charge problem [7].
This implies that a set of constraints to specify which segment of the arc cost
function to be considered must be added to the original set of constraints.

Let us define the set of additional constraints bycontraction constraintsas fol-
lows:
For iterationk, if x̄k−1

ij occurs in ther-th segment, then

λr−1
ij 6 xij < λrij , for (i, j) ∈ A.

In addition, we define acontractionfor iterationk by

(l̄kij , ū
k
ij ) for (i, j) ∈ A.

wherel̄kij = λr−1
ij and ūkij = λrij if x̄k−1

ij ∈ (λr−1
ij , λrij ]. Clearly, these contraction

constraints replace the original redundant capacity constraints, 06 xij 6 uij at
each iteration.

As a result, we solve the following recursive LP problems incorporating the
Dynamic Domain Contraction (DDC) scheme described above.

[NPLNFP]kLP− DDC

min f̄ k(x) = (c̄k)T x
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subject to

x ∈ Dk = S ∩ Ck

where

Dk ⊂ IRn, where n = |A|, (3.13)

S = { x | Ax = b, A is a node-arc incidence matrix} and (3.14)

Ck = { x | l̄k 6 x 6 ūk}. (3.15)

In this model, we solve LP problems over the reduced domainDk which is dy-
namically updated based on the previous LP solutionx̄k−1. A series of reduced
domainsDk may produce different types of solutions (i.e. interior point solution,
boundary (not vertex) point solution, or extreme point solution) for the original
problem [NPLNFP], according to the relation betweenS andCk.

It is clear that there are two types of reduced domainsDk which characterize
the obtained solution in this domain contraction procedure. The first case is that if
Ck ⊂ S which implies thatDk = Ck, then we obtain aninterior point solutionfor
the original nonconvex problem, although the LP solution occurs at a vertex ofDk.
Notice that the reduced feasible domainDk is an-dimensional polytope generated
by n contraction constraints. The second case is that ifCk 6⊂ S, so that the reduced
domainDk contains some boundary points and/or extreme points ofS, then we
may have boundary or extreme point solution for the original problem.

As a result, this dynamic domain contraction algorithm produces a series of
reduced feasible domainsDk to search the sub-domain which contains the solution,
and the algorithm terminates when there is no more improvement in successive LP
solutions.

4. Numerical Experiments

Due to the difficulty of finding a set of known test problems, we generate five
groups of pseudo-random problems, whose numbers of arcs are ranged from 35 to
335. Each group has two sets of problems, and each set contains 20 problems. The
first set and second set in each group consist of problems with the fixed number
of linear segmentsrij = 3 andrij = 5, respectively. Note that the actual size of
problems (the number of binary variables) in the 0-1 mixed integer programming
formulation,[NPLNFP]MIP is given by|A|rij whenrij is a constant for all arcs. This
estimation is based on an extended network [9] from applying the Arc Separation
Procedure (ASP) for the original network. Thus, more precisely, the total number
of arcs in the extended network structure when each arc cost has a differentrij is
given by

ne =
∑
(i,j)∈A

rij (4.16)
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wherene denotes the number of arcs,|Ae| in the extended network,Ge = (Ae,N).
This means that the actual number of binary variables in the[NPLNFP]MIP formu-
lation ranges from 105 up to 1675 in our test problems.

The algorithm has two parts, the domain contraction subroutine (DDC) to gen-
erateDk and the dynamic slope scaling subroutine (DSSP). The algorithm is im-
plemented in standardC with CPLEX 4.0 (callable library) and executed on a
SUN workstation runningUNIX. In addition, we apply theCPLEX branch and
bound algorithm to the test problems for the exact solution, in order to assess the
effectiveness and efficiency of the proposed DDC algorithm.

It is observed that the branch and bound algorithm has difficulty to obtain the
exact solutions for the problems having more that 80 arcs with 5 segments (i.e.
ne = 80× 5= 400), due to the memory limitation.

For each set of 10 problems, we report the minimum, average and maximum
relative errors, and the computational time(sec). The relative errors are computed
as follows:

RE (%) =
[
fDDC− fexact

fexact

]
× 100,

and the computational time is measured by the totalCPU time excludingI/O
operations. For example, the average relative error in problem set #4 is 0.628%,
the average CPU time is 0.073(sec), and the maximum relative error is 0.82% from
implementing the proposed DDC algorithm on 20 instances. For problem set #5
to #10, the average relative errors are not available since the branch and bound
algorithm fails to find exact solutions for most instances.

In order to see the efficiency of the proposed algorithm, we may compare the
solution times betweenDDC and B&B algorithms. The average CPU times from
implementing the DDC algorithm are ranging from 0.014 (sec) up to 0.475 (sec)
over the test problems with up tone = 400, while the average CPU times from
the branch and bound algorithm are ranging from 6.091 (sec) to 965.355 (sec). The
maximum relative error and the maximum CPU time occur in Problem set # 4 as
of 0.94% and 1.02 (sec), respectively, while the maximum CPU time of the branch
and bound is 1799.32 (sec) for the same size of test problems.

The computational results are summarized in Table 1. The results show that
the proposed solution approach can produce ‘high’ quality near-optimal solutions
efficiently for such a difficult class of nonconvex piecewise linear network flow
problems described in Section 2, and the performance of the algorithm is stable
regarding time and quality.

5. Concluding Remarks

Different from the traditional solution methods including branch and bound and
cutting planes, the proposedDDC algorithm withDSSP consists of simply solving
recursively updated LP problems (DSSP) and dynamically reducing the feasible
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Table I. The summary of computational results for 200 problems

Problem Size DSSP B & B

Group set RE†(%) CPU (sec) CPU (sec)

no. m n rij ne (min, max) (min, max) (min, max)

G1 1 12 35 3 105 0.102 0.014 6.091

(0.00, 0.35) (0.01, 0.03) (1.21, 9.13)

2 12 35 5 175 0.391 0.026 43.745

(0.02, 0.74) (0.01, 0.04) (8.90, 67.25)

G2 3 18 80 3 240 0.628 0.073 191.547

(0.14, 0.82) (0.03, 0.13) (24.74, 560.24)

4 18 80 5 400 0.707 0.475 965.355

(0.16, 0.94) (0.09, 1.02) (65.46, 1799.32)

G3 5 27 175 3 525 n/a‡ 0.533 n/a

(0.16, 1.29)

6 27 175 5 875 n/a 0.959 n/a

(0.47, 1.93)

G4 7 32 225 3 675 n/a 0.692 n/a

(0.29, 1.54)

8 32 225 5 1125 n/a 1.304 n/a

(0.57, 3.80)

G5 9 37 335 3 1005 n/a 1.198 n/a

(0.59, 3.21)

10 37 335 5 1675 n/a 1.892 n/a

(0.77, 4.90)

†The average Relative Error.
‡Exact solutions are not available from B&B due to the memory limitation.

domain (DDC). Thus, the implementation of theDDC algorithm is fairly simple.
However, the results show that the algorithm generates high quality solutions (with
less than 1% error) efficiently. In addition, due to its simple and flexible structure,
the proposed method is robust.

For the future work, the quality of solutions obtained by the DCC algorithm can
be improved by incorporating a local search procedure.
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